HOMEWORK 4 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

Section 2.7: Derivatives and rates of change
2.7.40. $f^{\prime}(t)=-\frac{1}{t^{2}}-1$ (show this, using the definition of the derivative) Velocity $=f^{\prime}(5)=-\frac{26}{25}$ meters per second, Speed $=\frac{26}{25}$ meters/second
2.7.48.
(a) Rate of bacterias/hour after 5 houts
(b) $f^{\prime}(10)>f^{\prime}(5)$ (basically, the more bacteria there are, the more can be produced). But if there's a limited supply of food, we get that $f^{\prime}(10)<$ $f^{\prime}(5)$, i.e. bacterias are dying out because of the limited supply

Section 2.8: The derivative as a function
2.8.3.
(a) II
(b) IV
(c) I
(d) III
2.8.23. $f^{\prime}(t)=5-18 t$
2.8.40. -1 (not continuous there); 2 (graph has a kink)
2.8.45.
(a) Acceleration
(b) Velocity
(c) Position
2.8.54. Not differentiable at the integers, because not continuous there; $f^{\prime}(x)=0$ for x not an integer, undefined otherwise. Graph looks like the 0 -function, except it has holes at the integers.

SECtion 3.1: Derivatives of polynomials and exponential functions
3.1.20. $S^{\prime}(R)=8 \pi R$

Date: Friday, September 27th, 2013.
3.1.35. $y^{\prime}=4 x^{3}+2 e^{x}$, so $y^{\prime}(0)=2$, and so the equation of tangent line is $y-2=$ $2(x-0)$, i.e. $y=2 x+2$ and equation of normal line is $y-2=-\frac{1}{2}(x-0)$, i.e. $y=-\frac{1}{2} x+2$ (remember that the normal line still goes through $(0,2)$, but has slope $=$ the negative reciprocal of the slope of the tangent line)
3.1.47.
(a) $v(t)=s^{\prime}(t)=3 t^{2}-3 ; a(t)=v^{\prime}(t)=6 t$
(b) $a(2)=12$
(c) $v(t)=0$ if $t=1$ or $t=-1$, but $t>0$ (negative time doesn't make sense), so $t=1$, and $a(1)=6$
3.1.54. First of all $y^{\prime}=\frac{3}{2} \sqrt{x}$ and first find a point x where $y^{\prime}(x)=3$ (remember that two lines are parallel when their slopes are equal, and the slope of $y=1+3 x$ is 3). So you want $\frac{3}{2} \sqrt{x}=3$, so $\sqrt{x}=2$, so $x=4$. Now all that you need to find out is the slope of the tangent line to the curve at 4 . The equation is: $y-8=3(x-4)$ (because from the above calculation the slope is 3 , and the tangent line goes through $(4, f(4))=(4,8))$

Section 3.2: The product and quotient rules

3.2.15. $y^{\prime}=\frac{2 t\left(t^{4}-3 t^{2}+1\right)-\left(t^{2}+2\right)\left(4 t^{3}-6 t\right)}{\left(t^{4}-3 t^{2}+1\right)^{2}}$
3.2.33. $y^{\prime}(x)=2 e^{x}+2 x e^{x}$, so $y^{\prime}(0)=2$, and so the tangent line has equation: $y-0=2(x-0)$,i.e $y=2 x$, and the normal line has equation: $y-0=-\frac{1}{2}(x-0)$, i.e. $y=-\frac{1}{2} x$
3.2.41. $f^{\prime}(x)=\frac{2 x(1+x)-x^{2}}{(1+x)^{2}}=\frac{x^{2}+2 x}{x^{2}+2 x+1}$, so $f^{\prime \prime}(x)=\frac{(2 x+2)\left(x^{2}+2 x+1\right)-\left(x^{2}+2 x\right)(2 x+2)}{\left(x^{2}+2 x+1\right)^{2}}$, and so $f^{\prime \prime}(1)=\frac{(2+2)(1+2+1)-(1+2)(2+2)}{(1+2+1)^{2}}=\frac{(4)(4)-(3)(4)}{(4)(4)}=\frac{16-12}{16}=\frac{4}{16}==\frac{1}{4}$
3.2.57. $(9200)(30593)+(961400)(1400)=1,627,000$

Section 3.3: Derivatives of trigonometric functions

3.3.37. We have $\sin (\theta)=\frac{x}{10}$, so $x=10 \sin (\theta)$, so $x^{\prime}(\theta)=10 \cos (\theta)$, and $x^{\prime}\left(\frac{\pi}{3}\right)=$ $10 \cos \left(\frac{\pi}{3}\right)=\frac{10}{2}=5$
3.3.39. 3 (multiply the fraction by $\frac{3}{3}$ and use the fact that $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x}=1$)
3.3.40. $\frac{4}{6}=\frac{2}{3}$ (multiply the numerator by $\frac{4}{4}$ and the denominator by $\frac{6}{6}$ and use the facts that $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x}=1$ and $\lim _{x \rightarrow 0} \frac{\sin (6 x)}{6 x}=1$)

